skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moosa, Rahim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Motivated by the search for methods to establish strong minimality of certain low order algebraic differential equations, a measure of how far a finite rank stationary type is from being minimal is introduced and studied: Thedegree of nonminimalityis the minimum number of realisations of the type required to witness a nonalgebraic forking extension. Conditional on the truth of a conjecture of Borovik and Cherlin on the generic multiple-transitivity of homogeneous spaces definable in the stable theory being considered, it is shown that the nonminimality degree is bounded by theU-rank plus 2. The Borovik–Cherlin conjecture itself is verified for algebraic and meromorphic group actions, and a bound ofU-rank plus 1 is then deduced unconditionally for differentially closed fields and compact complex manifolds. An application is given regarding transcendence of solutions to algebraic differential equations. 
    more » « less
    Free, publicly-accessible full text available February 5, 2026
  3. In this paper, it is shown that if p is a complete type of Lascar rank at least 2, in the theory of differentially closed fields of characteristic zero, then there exists a pair of realisations a, b such that p has a nonalgebraic forking extension over a, b. Moreover, if A is contained in the field of constants then p already has a nonalgebraic forking extension over a. The results are also formulated in a more general setting. 
    more » « less